ÀÏÀß·¯Ã¤¿ë°ü
ä¿ëÁ¤º¸
ÀÎÀç°Ë»ö
±³À°Á¤º¸
ÇìµåÇåÆÃ
½º¸¶Æ®Å¸¿î
ȸ¿ø¼­ºñ½º
À̷¼­ µî·Ï
ä¿ë°ø°í µî·Ï

(Expert) AI Product Data Engineer (AI¼¾ÅÍ)

¾÷Á¾ Åë½Å/ÅÚ·¹ÄÞ/³×Æ®¿öÅ© ÀÚº»±Ý
±â¾÷ÇüÅ ´ë±â¾÷ ¸ÅÃâÇöȲ
´ëÇ¥ÀÚ »ç¿ø¼ö
ȸ»çÁÖ¼Ò ¼­¿ï Áß±¸ ³²´ë¹®·Î5°¡ SK³²»êºôµù 20Ãþ »ó»ý¾ÆÄ«µ¥¹Ì
  • ÇöÀç ä¿ëÁ¤º¸¸¦ º¹»çÇÕ´Ï´Ù.
  • ÇöÀç ä¿ëÁ¤º¸¸¦ ÇÁ¸°ÆÃÇÕ´Ï´Ù.




Á÷Á¾ À¥µðÀÚÀÎ, ÀÀ¿ëÇÁ·Î±×·¡¸Ó(Unix,Linux,Java), ½Ã½ºÅÛÇÁ·Î±×·¡¸Ó, Çϵå¿þ¾î¼³°è¡¤°³¹ß¡¤°ü¸®, µ¥ÀÌÅͺ£À̽º Àü¹®Á÷
±Ù¹«ÇüÅ Á¤±ÔÁ÷ ä¿ëÁ÷±Þ -
¸ðÁýÀοø 0 ¸í ³ªÀÌ -
°æ·Â °æ·Â ±Þ¿©Á¶°Ç ´ç»ç±ÔÁ¤
Çз ¼®»ç ÀÌ»ó Á¢¼ö±â°£ Á¢¼ö±â°£ÀÌ Áö³µ½À´Ï´Ù
 [ȨÆäÀÌÁöÁ¢¼ö]

Á¢¼ö±â°£ÀÌ Áö³µ½À´Ï´Ù

* ´ã´ç¾÷¹«
»ó¼¼Á¶°Ç

(Expert) AI Product Data Engineer (AI¼¾ÅÍ)

¸ðÁýºÎ¹® ¹× ÀÚ°Ý¿ä°Ç

ÁÖ ±Ù¹«Áö

Á÷¹«

Á¶Á÷ ä¿ëÀ¯Çü Á÷±ÞÀ¯Çü

º»»ç_SKT_Ÿ¿ö

Tech R&D

Data_Machine

_Intelligence±×·ì

Á¤±ÔÁ÷

½Ç¹«Á÷

(Expert)

* SKÅÚ·¹ÄÞ AI¼¾ÅÍÀÇ Data Machine Intelligence GroupÀº SKT ³»/¿ÜºÎ µ¥ÀÌÅ͸¦ ¹ÙÅÁÀ¸·Î

AI°ü·Ã ¼­ºñ½º¸¦ °³¹ßÇϰí ÀÖÀ¸¸ç AI Production Engineer ÆÀÀº µ¥ÀÌÅ͸¦ È¿°úÀûÀ¸·Î

ºÐ¼®ÇÏ°í ´Ù¾çÇÑ AI±â¹Ý ¼­ºñ½º¿¡ ¿¬°áÇÒ ¼ö ÀÖ´Â Big Data/AI Platform °³¹ßÇϰí ÀÖ½À´Ï´Ù.

¸ðµç ÆÀ¿øÀÌ Á÷Á¢ Äڵ带 Â¥°í ÄÚµå·Î Ä¿¹Â´ÏÄÉÀ̼ÇÀ» Çϸç

¾Æ·¡´Â AI Production EngineerÆÀ¿¡¼­ »ç¿ëÇÏ´Â ±â¼ú°ú ÀÎÇÁ¶ó ȯ°æÀÔ´Ï´Ù.


Hive as data warehouse, Spark for distributed processing, Kafka as a messaging system.

S3, Dynamo db, Azure Blob, Google Cloud Storage to expose data.

Sbt for compilation and dependency management.

RDS for access to relational databases, HDFS, S3 as a distributed storage system.

YARN and Kubernetes as cluster orchestration system.

Airflow as a process manager, Gitlab-CI as a continuous integration manager.

Baremetal, AWS, Azure, GCP as infra.

ÁÖ¿ä¾÷¹«

-¹èÄ¡¿Í ½ºÆ®¸² µ¥ÀÌÅÍ ÆÄÀÌÇÁ ¶óÀÎ °³¹ß ¹× ¿î¿µ

-µ¥ÀÌÅÍ ºÐ¼®°¡ ¹× ÇÁ·Î´öÆ® ¸Å´ÏÀú¿ÍÀÇ Çù¾÷

-¹Ýº¹ÀûÀÎ ¾÷¹«ÀÇ ÀÚµ¿È­

Çʿ俪·®

-Æ®·¯ºí ½´ÆÃ, µð¹ö±ë, ÀÚµ¿È­¿¡ ´ëÇÑ ¿­Á¤

-ÆÛÆ÷¸Õ½º Æ©´×¿¡ ´ëÇÑ ¿­Á¤

-½Ç½Ã°£ ºÐ»ê ó¸® ½Ã½ºÅÛ °³¹ß ¹× ¿î¿µ °æÇè

-µÎ °¡Áö ÀÌ»óÀÇ ÇÁ·Î±×·¡¹Ö ¾ð¾î¿Í ÆÐ·¯´ÙÀÓ¿¡ °üÇÑ Àü¹®¼º

-»ó¿ë ¼­ºñ½º ¹× ¼Ö·ç¼Ç °³¹ß ¹× ¿î¿µ °æÇè

ÀÚ°Ý¿ä°Ç

-ÃÑ º¸À¯°æ·Â: 3³â ÀÌ»ó

-ÇзÂ/Àü°ø: ¼®»ç ÀÌ»ó, ÄÄÇ»ÅÍ °øÇÐ °ü·Ã Àü°øÀÚ ¿ì´ë


*±âŸ

-Python(strongly preferred), Scala, SQL, Hadoop, Docker »ç¿ë °æÇè(¿ì´ë)

-Spark, Hive, Kafka, Airflow, Gitlab-CI »ç¿ë °æÇè(¿ì´ë)

±Ù¹«Á¶°Ç

  • - ±Ù¹«ÇüÅ : Á¤±ÔÁ÷
  • - ±Ù¹«Áö¿ª : ¼­¿ï Áß±¸

ÀüÇüÀýÂ÷

  • - ¼­·ùÀüÇü > ÄÚµùÅ×½ºÆ® > Å×ÀÌÅ© Ȩ ÇÁ·ÎÁ§Æ® > ±â¼ú¸éÁ¢ > ÀÓ¿ø¸éÁ¢

Á¦Ãâ¼­·ù

  • - À̷¼­, ÀÚ±â¼Ò°³¼­ (À̷¼­¿¡ ¿¬¶ôó, Èñ¸Á¿¬ºÀ ±âÀç)

Á¢¼ö±â°£ ¹× ¹æ¹ý

±âŸ

  • - º´¿ªÇÊ ¶Ç´Â ¸éÁ¦ÀÚ
  • - ÇØ¿Ü¿©Çà¿¡ °á°Ý»çÀ¯°¡ ¾ø´Â ÀÚ





* ÀÔ»çÁö¿ø ½Ã Áß¿ä»çÇ×À» ²À üũÇϼ¼¿ä!

* ±Ù¹«È¯°æ
±Ù¹«Áö¿ª : ¼­¿ï
±Þ¿©Á¶°Ç : ´ç»ç±ÔÁ¤
* Á¢¼ö°³¿ä

¿À´Ã¸¶°¨

Á¢¼ö±â°£ÀÌ Áö³µ½À´Ï´Ù

¡á Á¢¼ö±â°£   ¡á ¿À´Ã   ¡á ¸¶°¨

2019. 08

  • ÀÏ
  • ¿ù
  • È­
  • ¼ö
  • ¸ñ
  • ±Ý
  • Åä
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
* ´ã´çÀÚ Á¤º¸
¸ðÁý±â°£ÀÌ Áö³­ ä¿ëÁ¤º¸ÀÇ °æ¿ì ´ã´çÁ¤º¸´Â °ø°³µÇÁö ¾Ê½À´Ï´Ù.
ÇöÀç ä¿ëÁ¤º¸¸¦ º¹»çÇÕ´Ï´Ù. ÇöÀç ä¿ëÁ¤º¸¸¦ ÇÁ¸°ÆÃÇÕ´Ï´Ù.

µî·Ï : 2019³â 8¿ù 4ÀÏ (ÀÏ) 05:45    ÃÖÁ¾¼öÁ¤ : 2019³â 8¿ù 4ÀÏ (ÀÏ) 06:16

º» Á¤º¸´Â SKÅÚ·¹ÄÞ(ÁÖ) ¿¡¼­ Á¦°øÇÑ ÀÚ·áÀ̸ç, ½ºÄ«¿ìÆ®Àº(´Â) ±× ³»¿ë»óÀÇ ¿À·ù ¹× Áö¿¬, ±× ³»¿ëÀ» ½Å·ÚÇÏ¿© ÃëÇØÁø Á¶Ä¡¿¡ ´ëÇÏ¿© Ã¥ÀÓÀ» ÁöÁö ¾Ê½À´Ï´Ù. º» Á¤º¸´Â ½ºÄ«¿ìÆ®ÀÇ µ¿ÀÇ ¾øÀÌ Àç¹èÆ÷ÇÒ ¼ö ¾ø½À´Ï´Ù.

¢À ½ºÄ«¿ìÆ® ¿¡¼­´Â °ÅÁþ ±¸ÀÎ ±¤°í¿¡ ´ëÇÑ ÇÇÇØ¸¦ ÃÖ¼ÒÈ­ Çϱâ À§ÇÏ¿© ÇãÀ§ ä¿ë°ø°í¿¡ ½Å°íÁ¦µµ¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù.
°ÅÁþ±¸Àα¤°í¿¡ ´ëÇÑ ±¸Á÷ÀÚÁÖÀÇ»çÇ× ½Å°íÆ÷»ó±ÝÁ¦ ¾È³» ÇãÀ§ ä¿ë°ø°í ½Å°íÇϱâ

±Ù¹«Áö À§Ä¡ º¸±â

±Ù¹«Áö ÁÖ¼Ò

(100-749) ¼­¿ï Áß±¸ ³²´ë¹®·Î5°¡ SK³²»êºôµù 20Ãþ »ó»ý¾ÆÄ«µ¥¹Ì

Å©°Ôº¸±â

[ƯÁý±âȹ] ¹ý·ü»ç¹«Á÷

Á÷¾÷µ¸º¸±â

¹ý·ü»ç¹«Á÷À̶õ?º¯..

¸éÁ¢ helper

¸éÁ¢Áú¹®

Àμº ¡Ú¡Ú¡Ú¡Ú
Àû¼º ¡Ú¡Ú¡Ú¡Ú

Special Interview

½ºÆä¼ÈÀÎÅͺä
¹ý·ü »ç¹«Á÷À̶ó´Â ÀÏÀÌ ¾î¶² ÀÏÀÎÁö Àß ¸ð..